
SCHEDULING EMPLOYEES IN QUEBEC’S LIQUOR
STORES WITH INTEGER PROGRAMMING

Bernard Gendron

Département d’informatique et de recherche opérationnelle
Université de Montréal

February 2004

CONTEXT

• SAQ (Société des alcools du Québec):

– public corporation of the Province of Quebec

– distributes and sells alcohol-based products

– more than 400 stores + warehouses (divided into geographical areas)

• Problem: generate the weekly schedules of more than 3000 employees

• Process handled manually until 2002

• Very costly: salaries + complaints = 1,300,000$/year

• Objective: develop a Web-based database system to automate this process

CONTRIBUTION OF OR

• Problem: generating optimal schedules cannot be achieved with simple
heuristics!

• Optimal schedule: strictly adhere to all union agreement rules

• Methodology of choice: Integer Programming (IP)

DECOMPOSITION BY EMPLOYEE

• The union agreement imposes a sequential assignment!

• The most senior employee gets the best schedule

• The best remaining schedule is assigned to the next most senior employee

• And so on, until all shifts are assigned

• Guaranteed to produce a feasible schedule: enough employees to fill the
requirements of all stores

DECOMPOSITION BY DAY

• Schedules are planned every week

• Any employee cannot work more than 10 hours daily and 38 hours over the
whole week

• Backward Assignment Rule: the schedule must be generated on a daily
basis, starting from the end of the week (Saturday) and going backward
until the beginning (Sunday)

• Rationale: drive the days off towards the beginning of the week

• Of course, we could do better (assign more work hours) by planning over
the whole week, but we are not allowed to do so: we must respect all union
agreement rules!

SOME BASIC DEFINITIONS

• Each day is divided into 15-minute periods

• Interval: set of consecutive time periods

• Work interval: interval entirely worked by an employee

• Categories of work intervals:

– Daily: 8:00am-11:00pm

– Overnight: 9:00pm-6:00am

– Mixed

• When planning a schedule for a given day, we must also consider the last
three hours of the day before!

• Discontinuity: two disjoint work intervals on the same day

SOME RULES

• Rest Rule: at least 8 hours of rest, after and before an overnight work
interval

• Easy to enforce using the Backward Assignment Rule, but we must know
when the employee stopped working on the Saturday of the week before!

• Substitution Rule: a guaranteed shift is assigned to the employee, unless
there is another schedule that produces more work hours of the same work
interval category and in the same store

• Travel Time Rule: when assigned to two different stores, the employee
must have enough time to travel between them

• No more than two discontinuities allowed

• Favor schedules with no discontinuity: to be chosen, a schedule with at least
one discontinuity must have more than one work hour more than any other
schedule with no discontinuity

SOME DIFFICULT RULES

• Lunch Break Rule: the employee has a one-hour unpaid lunch break when
the work interval is entirely contained in the interval 10:30am-3:30pm

• Similar rules for dinner (3:30pm-8:30pm) and overnight breaks

• Split Shift Rule: a splittable shift can be split into two parts, the piece,
assigned to the employee, and the residual, subsequently assigned to another
employee

• Each work interval must contain at least three hours: a splittable shift has
at least 6 work hours, and both the piece and the residual have at least
three work hours

• Each rule would be easy to manage (and model) independently, but their
interaction creates problematic situations!

SOME PROBLEMATIC SITUATIONS

• The employer must not pay more work hours than required: if the employee
is assigned a work interval of p work hours, obtained by splitting some shifts
whose total number of work hours is n, the residuals shoud not contain more
than n − p work hours

• Adjust the residual:

– Remove one hour

– Remove two hours

– Add one hour

• Forbid opportunistic split, a split that allows to avoid the lunch break

OBJECTIVE FUNCTION

• Maximize number of work hours

• Task preference

• Minimize discontinuities

• Minimize number of stores

• Minimize number of split shifts

• Store preference

• Favor earliest periods (starting at 8:00am)

• Maximize number of shifts

SOME CONSTRAINTS

• Assignment Constraints: yi = 1: if period i is assigned

zj = 1: if shift j is assigned

xij = 1: if splittable shift j is assigned at period i
∑

j∈JU
i

zj +
∑

j∈JD
i

xij = yi, i ∈ I

• Break Constraints: rk = 1: if the employee takes break k

rk ≥
∑

i∈Ik

yi − |Ik| + 1, k ∈ K

• Work Hour Constraints: yW
i = 1: if period i is worked

∑

i∈Ik

yW
i =

∑

i∈Ik

yi − ρrk, k ∈ K

yW
i = yi, k ∈ K, i /∈ Ik

DISCONTINUITY CONSTRAINTS

• ui = 1: if the employee is assigned to period i, but not period i − 1

ui ≥ yi − yi−1, i ∈ I, i 6= f(I)

ui ≤ yi, i ∈ I

ui ≤ 1 − yi−1, i ∈ I, i 6= f(I)

• Each work interval must contain at least three hours:

ui ≤ yi′, i ∈ I, i < i′ ≤ min(i + τ − 1, l(I))

• uD
i = 1, if there is a discontinuity at period i

uD
i ≥ ui + ui′ − 1, i ∈ I, f(I) < i′ < i

• No more than two discontinuities:
∑

i∈I
uD

i ≤ φ

• uD
0 = 1, if there is at least one discontinuity

uD
0 ≥ uD

i , i ∈ I

SPLIT SHIFT CONSTRAINTS

• vij = 1: if splittable shift j is split “forward” at period i, i.e., xij = 1 and
x(i−1)j = 0

wij = 1: if splittable shift j is split “backward” at period i− 1, i.e., xij = 0
et x(i−1)j = 1

xij − vij − x(i−1)j + wij = 0, i ∈ I, j ∈ JD
i ∩ JD

i−1, i 6= f(I)

• Each splittable shift can be split only once:
∑

i∈Ij

(vij + wij) ≤ 1, j ∈ JD

• The residual must contain at least three hours (simplified version):
∑

i∈Ij

xij + τ
∑

i∈Ij

(vij + wij) ≤ |Ij|, j ∈ JD, |Kj| = 0

OBJECTIVE

• Maximize Number of Work Hours:

∑

i∈I
yW

i

• Penalize Discontinuity:

−uD
0

• Task Preference: oit = 1: if period i is assigned to task t
∑

j∈JU
i ∩Jt

zj +
∑

j∈JD
i ∩Jt

xij = oit, i ∈ I, t ∈ Ti

oW
it = 1: if period i is worked and assigned to task t

oW
it ≤ yW

i , i ∈ I, t ∈ Ti

oW
it ≤ oit, i ∈ I, t ∈ Ti

∑

i∈I

∑

t∈Ti

θto
W
it

• Minimize discontinuities:

−
∑

i∈I
uD

i

IMPLEMENTATION

• C++ code

– interacts with the Web-based database system developed by the SAQ to
acquire the data for each employee

– implements the IP model using ILOG Concert Technology

– solves the IP model with ILOG CPLEX

• Fine tuning CPLEX parameters is important (example: from 20 minutes to
20 seconds!)

• Most instances are solved within seconds, except a few that can take more
than one hour!

• Two CPLEX licenses + queueing system (the different geographical areas
can be processed independently)

CASE HISTORY

• March 2000: beginning of the project (focus on modeling split shifts)

• May 2000: first release of the C++ code

• December 2000: version 1.0 (after 13 releases involving multiple bug fixes
+ definition of new constraints)

• July 2001: version 3.0 (includes several new constraints: Substitution Rule,
Task Preference, overnight shifts)

• August 2002: version 5.0 (interacts with the queueing system)

• Summer 2002: implementation in all stores

• July 2004: version 5.9

IMPACT ON THE ORGANIZATION

• Savings: about 1,000,000$/year (75% salaries, 25% complaints)

• Cost of developing the system: 1,300,000$

• Simplifies the work of store managers and union representatives:
eliminates paperwork, simplifies data management, reduces the time
dedicated to scheduling task

• Union agreement rules now interpreted in a uniform way in all stores across
the Province: eliminates many complaints

• Positive impact on the working relations all across the organization
(employees and store managers, union and human resources department)

